Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 21: 101081, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38205157

RESUMO

This investigation explored chemical changes in cicadas during their developmental stages (nymph, late nymph, and adult). Tocopherols (α, δ, γ) were found at a total content of 13.7 mg/g, while γ-oryzanol was observed at 2.6 mg/g, with nymphs having the highest levels, followed by late nymphs and adults. Essential amino acids increased progressively with maturation, with methionine being the predominant amino acid in all samples. The index of essential amino acids in each tissue was as follows: adult (0.36), late nymph (0.33), and nymph (0.12). Eicosapentaenoic acid concentrations varied from 230 mg/100 g in adults to 880 mg/100 g in nymphs. Protein analysis using the Protein Simple Jess system revealed a molecular weight distribution ranging from 10 to 75 kDa, accounting for approximately 70 % of the total protein content. These findings offer valuable insights for incorporating cicadas as functional food ingredients, diversifying food product formulations.

2.
Enzyme Microb Technol ; 162: 110138, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36252443

RESUMO

Milk glycoproteins play various biological roles including antibacterial, antiviral activities, modulating immune responses in living organisms. Released N-glycans from milk glycoproteins act as growth substrates for infant-associated bifidobacteria, which are key members of the breastfed infant's gut. To date, the mechanisms, and contributions of glycans to the biological activities of glycoproteins remain to be elucidated. Only by testing both the released glycans and the deglycosylated protein in their native (i.e., non-denatured) form, can the individual contribution to the biological activity of glycoproteins be elucidated. However, for conventional enzymatic and chemical deglycosylation strategies to work efficiently, glycoprotein denaturation is required, which alters the protein native shape, hindering further investigations of its biological roles. An endo-ß-N-acetylglucosaminidase (EndoBI-1) from Bifidobacterium longum subsp. infantis ATCC 15697 (B. infantis) was characterized as having the ability to release N-glycans from bovine milk glycoproteins efficiently, without the denaturation. In this study, the activity of EndoBI-1 was compared to a commercial enzyme to release N-glycans, the peptide-N-glycosidase F (PNGase F), using dairy glycoproteins as the substrate. The kinetic evaluation showed that EndoBI-1 displayed higher activity on native glycoproteins than PNGase F, with 0.036 mg/mL×min and 0.012 mg/mL×min glycan release, respectively. EndoBI-1 released a broader array of glycan structures compared to PNGase F from native glycoproteins. Thirty-two and fifteen distinct compositions were released from the native glycoproteins by EndoBI-1 and PNGase F, respectively, as characterized by advanced mass spectrometry. EndoBI-1 can be considered a promising enzyme for the release of N-glycans and their protein backbone in the native form, which will enable effective glycan release and will facilitate subsequent investigations to reveal their contribution to glycoproteins' biological roles.


Assuntos
Acetilglucosaminidase , Colostro , Humanos , Gravidez , Feminino , Acetilglucosaminidase/análise , Colostro/química , Colostro/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/análise , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/análise , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/química , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Polissacarídeos/metabolismo , Glicoproteínas/metabolismo
3.
Metabolites ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677377

RESUMO

Little is known about the extent of variation and activity of naturally occurring milk glycosidases and their potential to degrade milk glycans. A multi-omics approach was used to investigate the relationship between glycosidases and important bioactive compounds such as free oligosaccharides and O-linked glycans in bovine milk. Using 4-methylumbelliferone (4-MU) assays activities of eight indigenous glycosidases were determined, and by mass spectrometry and 1H NMR spectroscopy various substrates and metabolite products were quantified in a subset of milk samples from eight native North European cattle breeds. The results showed a clear variation in glycosidase activities among the native breeds. Interestingly, negative correlations between some glycosidases including ß-galactosidase, N-acetyl-ß-d-glucosaminidase, certain oligosaccharide isomers as well as O-linked glycans of κ-casein were revealed. Further, a positive correlation was found for free fucose content and α-fucosidase activity (r = 0.37, p-value < 0.001) indicating cleavage of fucosylated glycans in milk at room temperature. The results obtained suggest that milk glycosidases might partially degrade valuable glycans, which would result in lower recovery of glycans and thus represent a loss for the dairy ingredients industry if these activities are pronounced.

4.
Int Dairy J ; 1142021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33304057

RESUMO

Milk oligosaccharides are of high interest due to their bioactive properties. This study is the first to characterise milk oligosaccharides from native North European cattle breeds, as represented by 80 milk samples collected from eight native breeds originated from Norway (Norwegian Doela cattle and Norwegian Telemark cattle), Sweden (Swedish Mountain cattle), Denmark (Danish Red anno 1970), Iceland (Icelandic cattle), Lithuania (native Lithuanian Black and White) and Finland (Western Finncattle and Eastern Finncattle). Using high-performance liquid-chromatography chip/quadrupole time-of-flight mass-spectrometry, 18 unique monosaccharide compositions and a multitude of isomers were identified. No N-glycolylneuraminic acid was identified among these breeds. Western Finncattle milk was most abundant in neutral, acidic and fucosylated oligosaccharides. Further, Eastern Finncattle milk was significantly higher in acidic oligosaccharides and Icelandic cattle milk significantly higher in fucosylated oligosaccharides, compared to the mean. This study highlights specific native breeds of particular interest for future exploitation of milk oligosaccharides and breeding strategies.

5.
J Agric Food Chem ; 68(51): 15208-15215, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33296195

RESUMO

N-Glycans are structurally similar to human milk oligosaccharides, the gold standard prebiotics for infants. Bovine milk N-glycans released by endo-ß-N-acetylglucosaminidase (EndoBI-1) were shown to have similar prebiotic selectivity as human milk oligosaccharides, explaining the interest for N-glycan recovery for use as prebiotics. Industrial thermal treatments such as high-temperature short-time (HTST) and ultra-high-temperature (UHT) might favor the enzymatic deglycosylation of N-glycans through promoting protein denaturation. We investigated the effects of HTST (72 °C for 15 s) and UHT (135 °C for 3 s) on N-glycan release from bovine colostrum glycoproteins by nonimmobilized and amino-immobilized EndoBI-1. A total of 104 N-glycans including isomers/anomers were identified by high-resolution mass spectrometry. In both EndoBI-1 forms, HTST increased the release of N-glycans; however, the impact of UHT on releasing N-glycans was comparable to the nonthermal treatment. Although the amino-immobilized enzyme similarly released neutral N-glycans as the free form, it released fewer sialylated and fucosylated N-glycans.


Assuntos
Acetilglucosaminidase/química , Colostro/química , Glicoproteínas/química , Polissacarídeos/química , Animais , Biocatálise , Bovinos , Feminino , Temperatura Alta , Espectrometria de Massas , Estrutura Molecular
6.
J Agric Food Chem ; 66(26): 6851-6859, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29799744

RESUMO

Oligosaccharides are known to affect the health of infants. The analysis of these complex molecules in (human) milk samples requires state-of-the-art techniques. This study analyzed the composition and concentration of oligosaccharides in early (day 3) and mature (day 42) human milk as well as in five different infant formula brands. The oligosaccharide content decreased in human milk from 9.15 ± 0.25 g/L at day 3 to 6.38 ± 0.29 g/L at day 42 of lactation. All formulas resulted to be fortified with galacto-oligosaccharides, with one also fortified with polydextrose and another with long-chain fructo-oligosaccharides. About 130 unique oligosaccharide structures were identified in the human milk samples, whereas infant formula contained less diversity of structures. The comparisons indicated that composition and abundance of oligosaccharides unique to human milk are not yet reproduced in infant formulas. The analytical workflow developed is suitable for the determination of prebiotic oligosaccharides in foods that contain diverse carbohydrate structures.


Assuntos
Fórmulas Infantis/química , Leite Humano/química , Oligossacarídeos/análise , Cromatografia Líquida de Alta Pressão , Feminino , Alimentos Formulados/análise , Humanos , Espectrometria de Massas
7.
J Dairy Sci ; 100(5): 3883-3892, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28318588

RESUMO

Prebiotics are nondigestible dietary ingredients, usually oligosaccharides (OS), that provide a health benefit to the host by directly modulating the gut microbiota. Although there is some information describing OS content in dairy-source milk, no information is available to describe the OS content of beef-source milk. Given the different trait emphasis between dairy and beef for milk production and calf survivability, it is plausible that OS composition, diversity, and abundance differ between production types. The goal of this study was to compare OS in milk from commercial dairy and beef cows in early lactation. Early-lactation multiparous cows (5-12 d in milk) from 5 commercial Holstein dairy herds and 5 Angus or Angus hybrid beef herds were sampled once. Milk was obtained from each enrolled cow and frozen on the farm. Subsequently, each milk sample was assessed for total solids, pH, and OS content and relative abundance. Oligosaccharide diversity and abundance within and between samples was transformed through principal component analysis to reduce data complexity. Factors from principal component analysis were used to create similarity clusters, which were subsequently used in a multivariate logistic regression. In total, 30 OS were identified in early-lactation cow milk, including 21 distinct OS and 9 isomers with unique retention times. The majority of OS detected in the milk samples were present in all individual samples regardless of production type. Two clusters described distribution patterns of OS for the study sample; when median OS abundance was compared between the 2 clusters, we found that overall OS relative abundance was consistently greater in the cluster dominated by beef cows. For several of the structures, including those with known prebiotic effect, the difference in abundance was 2- to 4-fold greater in the beef-dominated cluster. Assuming that beef OS content in milk is the gold standard for cattle, it is likely that preweaning dairy calves are deprived of dietary-source OS. Although supplementing rations with OS is an approach to rectify this deficiency, understanding the health and productivity effects of improving OS abundance being fed to preweaning calves is a necessary next step before recommending supplementation. These studies should account for the observation that OS products are variable for both OS diversity and structural complexity, and some products may not be suitable as prebiotics.


Assuntos
Leite/química , Oligossacarídeos/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Lactação/efeitos dos fármacos , Oligossacarídeos/farmacologia
8.
PLoS One ; 12(2): e0171477, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28170415

RESUMO

Lactoferrin (LF) is one of the most abundant bioactive glycoproteins in human milk. Glycans attached through N-glycosidic bonds may contribute to Lactoferrin functional activities. In contrast, LF is present in trace amounts in bovine milk. Efforts to increase LF concentration in bovine milk led to alternative approaches using transgenic cows to express human lactoferrin (hLF). This study investigated and compared N-glycans in recombinant human lactoferrin (rhLF), bovine lactoferrin (bLF) and human lactoferrin by Nano-LC-Chip-Q-TOF Mass Spectrometry. The results revealed a high diversity of N-glycan structures, including fucosylated and sialylated complex glycans that may contribute additional bioactivities. rhLF, bLF and hLF had 23, 27 and 18 N-glycans respectively with 8 N-glycan in common overall. rhLF shared 16 N-glycan with bLF and 9 N-glycan with hLF while bLF shared 10 N-glycan with hLF. Based on the relative abundances of N-glycan types, rhLF and hLF appeared to contain mostly neutral complex/hybrid N-glycans (81% and 52% of the total respectively) whereas bLF was characterized by high mannose glycans (65%). Interestingly, the majority of hLF N-glycans were fucosylated (88%), whereas bLF and rhLF had only 9% and 20% fucosylation, respectively. Overall, this study suggests that rhLF N-glycans share more similarities to bLF than hLF.


Assuntos
Expressão Gênica , Lactoferrina/genética , Leite/metabolismo , Proteínas Recombinantes/genética , Animais , Animais Geneticamente Modificados , Bovinos , Análise por Conglomerados , Glicosilação , Humanos , Lactoferrina/química , Lactoferrina/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...